
17

ESPM UNIT II

The Old way and the NEW way: Principles of Conventional Software Engineering, Principles of Modern Software

Management, Transitioning to an Iterative Process.

Life Cycle Phases: Engineering and Production Stages, Inception, Elaboration, Construction, Transition Phases.

Artifacts of the Process: The Artifact Sets. Management Artifacts, Engineering Artifacts, Programmatic Artifacts.

PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING

Based on many years of software development experience, the software industry proposed so many principles (nearly
201 by – Davis‟s). Of which Davis‟s top 30 principles are:

1. Make quality #1: Quality must be quantified and mechanisms put into place to motivate its achievement.
2. High-quality software is possible: Techniques that have been demonstrated to increase quality include

involving the customer, prototyping, simplifying design, conducting inspections, and hiring the best people.

3. Give products to customers early: No matter how hard you try to learn users needs during the requirements

phase, the most effective way to determine real needs is to give users a product and let them play with it.

4. Determine the problem before writing the requirements: When faced with what they believe is a problem,
most engineers rush to offer a solution. Before you try to solve a problem, be sure to explore all the alternatives

and don't be blinded by the obvious solution.

5. Evaluate Design Alternatives: After the requirements are agreed upon, you must examine a variety of

architectures and algorithms. You certainly do not want to use "architecture" simply because it was used in the

requirements specification.

6. Use an appropriate process model: Each project must select a process that makes the most sense for that

project on the basis of corporate culture, willingness to take risks, application area, volatility of requirements,

and the extent to which requirements are well understood.

7. Use different languages for different phases: Our industry's eternal thirst for simple solutions to complex

problems has driven many to declare that the best development method is one that uses the same notation

throughout the life cycle.

8. Minimize Intellectual Distance: To minimize intellectual distance, the software's structure should be as close

as possible to the real –world structure.
9. Put techniques before tools: An undisciplined software engineer with a tool becomes a dangerous,

undisciplined software Engineer.
10. Get it right before you make it faster: It is far easier to make a working program run faster than it is to make a

fast program work. Don't worry about optimization during initial coding.

11. Inspect Code: Inspecting the detailed design and code is a much better way to find errors than testing.
12. Good Management is more important than good technology: Good management motivates people to do

their best, but there are no universal "right" styles of management.

13. People are the key to success: Highly skilled people with appropriate experience, talent, and training are key.
14. Follow with Care: Just because everybody is doing something does not make it right for you. It may be right,

but you must carefully assess its applicability to your environment.
15. Take responsibility: When a bridge collapses we ask, "What did the engineers do wrong?" Even when

software fails, we rarely ask this. The fact is that in any engineering discipline, the best methods can be used to

produce awful designs, and the most antiquated methods to produce elegant designs
16. Understand the customer's priorities: It is possible the customer would tolerate 90% of the functionality

delivered late if they could have 10% of it on time.
17. The more thy see, the more they need: The more functionality (or performance) you provide a user, the more

functionality (or performance) the user wants.
18. Plan to throw one away: One of the most important critical success factors is whether or not a product is

entirely new. Such brand-new applications, architectures, interfaces, or algorithms rarely work the first time.
19. Design for Change: The architectures, components and specification techniques you use must accommodate

change.

20. Design without documentation is not design: I have often heard software engineers say, “I have finished the

design. All that is left is the documentation.”

18

21. Use tools, but be realistic: Software tools make their users more efficient.

22. Avoid tricks: Many programmers love to crate programs with tricks constructs that perform a function
correctly, but in an obscure way. Show the world how smart you are by avoiding tricky code.

23. Encapsulate: Information-hiding is a simple, proven concept that results in software that is easier to test and
much easier to maintain.

24. Use coupling and cohesion: Coupling and cohesion are the best ways to measure software's inherent
maintainability and adaptability.

25. Use the McCabe complexity measure: Although there are many metrics available to report the inherent

complexity of software, none is as intuitive and easy to use as Total McCabe‟s.
26. Don't test your own software: Software developers should never be the primary testers of their own software.
27. Analyze causes for errors: It is far more cost-effective to reduce the effect of an error by preventing it than it is

to find and fix it. One way to do this is to analyze the causes of errors as they are detected.

28. Realize that software's entropy increases: Any software system that undergoes continuous change will grow
in complexity and will become more and more disorganized.

29. People and time are not interchangeable: Measuring a project solely by person-months makes little sense.

30. Expect Excellence: Your employees will do much better if you have high expectations for them.

PRINCIPLES OF MODERN' SOFTWARE MANAGEMENT

Top 10 principles of modern software management are:

1. Base the process on an architecture-first approach: This requires that a demonstrable balance be achieved

among the driving requirements, the architecturally significant design decisions, and the life-cycle plans before
the resources are committed for full-scale development.

2. Establish an iterative life-cycle process that confronts risk early that confronts risk early: With today's

sophisticated software systems, it is not possible to define the entire problem, design the entire solution, build

the software, then test the end product in sequence. Instead, an iterative process that refines the problem
understanding, an effective solution, and an effective plan over several iterations encourages a balanced

treatment of all stakeholder objectives. Major risks must be addressed early to increase predictability and avoid

expensive downstream scrap and rework.
3. Transition design methods to emphasize component-based development: Moving from a line-of-code

mentality to a component-based mentality is necessary to reduce the amount of human-generated source code

and custom development.

19

4. Establish a change Management Environment: the dynamics of iterative development, including concurrent

workflows by different teams working on shared artifacts, necessitates objectively controlled baselines.

5. Enhance change freedom through tools that support round-trip Engineering: Round trip engineering is the

environment support necessary to automate and synchronize engineering information in different formats (such
as requirements specifications, design models, source code, executable code, test cases).

6. Capture design artifacts in rigorous, model-based notation: A model based approach (such as UML)

supports the evolution of semantically rich graphical and textural design notations.

7. Instrument the process for objective quality control and progress assessment: Life-cycle assessment of the
progress and the quality of all intermediate products must be integrated into the process.

8. Use a demonstration-based approach: to assess intermediate artifacts.
9. Plan intermediate releases in groups of usage scenarios with evolving levels or detail: It is essential that the

software management process drive toward early and continuous demonstrations within the operational context
of the system, namely its use cases.

10. Establish a configurable process that is economically scalable: No single process suitable for all software

developments.

TRANSITIONING TO AN ITERATIVE PROCESS

 Modern software development processes have moved away form the conventional waterfall model, in which each

stage of the development process is dependent on completion of the previous stage.

 The economic benefits inherent in transitioning from the conventional waterfall model to an iterative development
process are significant but difficult to quantify.

20

 As one benchmark of the expected economic impact of process improvement, consider the process exponent
parameters of the COCOMO II mode. This exponent can range from 1.01 (virtually no diseconomy of scale) to

1.26 (significant diseconomy of scale).

The following paragraphs map the process exponent parameters of CO COMO II to my top 10 principles of a modern
process:

1. Application Precedentedness: domain experience is a critical factor in understanding how to plan and execute

a software development project. Early iterations in the life cycle establish precedents from which the product,

the process and the plans can be elaborated in evolving levels of detail.

2. Process flexibility: Development of modern software is characterized by such a broad solution space and so

many interrelated concerns that there is a paramount need for continuous incorporation of changes. A

configurable process that allows a common framework to be adapted across a range of projects is necessary to

achieve a software return on investment.

3. Architecture Risk Resolution: Architecture-first development is a crucial theme underlying a successful
iterative development process. A project team develops and stabilizes architecture before developing all the

components that make up the entire suite of applications components. An Architecture-first and component-

based development approach forces tile infrastructure, common mechanisms, and control mechanisms to be

elaborated early in the life cycle and drives all component make/buy decisions into the architectureprocess.
4. Team Cohesion: Successful teams are cohesive, and cohesive teams are successful. Successful teams and

cohesive teams share common objectives and priorities. Advances in technology (such as programming

languages, UML, and visual modeling) have enabled more rigorous and understandable notations for
communicating software engineering information, particularly in the requirements and design artifacts that

previously were ad hoc and based completely on paper exchange. These model-based formats have also enabled

the round-trip engineering support needed to establish change freedom sufficient for evolving design

representations.
5. Software Process Maturity: The Software Engineering Institute's Capability Maturity Model (CMM) is a well-

accepted benchmark for software process assessment. One of key themes is that truly mature processes are

enabled through an integrated environment that provides the appropriate level of automation to instrument the
process for objection quality control.

LIFE CYCLE PHASES

A modern software development process must be defined to support the following:
1. Evolution of the plans, requirements, and architecture, together with well defined synchronization points
2. Risk management and objective measures of progress and quality

3. Evolution of system capabilities through demonstrations of increasing functionality

Engineering and Production Stages

To achieve economies of scale and higher returns on investment, we must move toward a software manufacturing

process driven by technological improvements in process automation and component based development. Two stages of

the life cycle are:

1. The Engineering stage, driven by less predictable but smaller teams doing design and synthesis activities.
2. The Production stage, driven by more predictable but larger teams doing construction, test, and deployment

activities.

21

• The transition between engineering and production is a crucial event for the various stakeholders. The

production plan has been agreed upon, and there is a good enough understanding of the problem and the
solution that all stakeholders can make a firm commitment to go ahead with production.

• Engineering stage is decomposed into two distinct phases, inception and elaboration, and the production stage

into construction and transition. These four phases of the life-cycle process are loosely mapped to the
conceptual framework of the spiral model as shown in Figure:

INCEPTION PHASE
• The goal of this phase is to achieve concurrence among stakeholders on the lifecycle objectives for the project.

 Primary Objectives

• Establishing the project's software scope and boundary condition, including all operational concept, acceptance

criteria, and a clear understanding of what is and is not intended to be in the product.
• Discriminating the critical use cases of the system and the primary scenarios of operation that will drive the

major design trade-offs.

• Demonstrating at least one candidate architecture against some of the primary scenarios.

• Estimating the cost and schedule for the entire project (including detailed estimates for the elaboration phase).
• Estimating potential risks (sources of un predictability)
 Essential Activities

• Formulating the scope of the project. The information repository should be sufficient to define the problem

space and derive the acceptance criteria for the end product.
• Synthesizing the architecture: An information repository is created that is sufficient to demonstrate the

feasibility of at least one candidate architecture and an, initial baseline of make/buy decisions so that the cost,

schedule, and resource estimates can be derived.
• Planning and preparing a business case. Alternatives for risk management, staffing, iteration plans, and

cost/schedule/profitability trade-offs are evaluated.

 Primary Evaluation Criteria

• Do all stakeholders concur on the scope definition and cost and schedule estimates?
• Are requirements understood, as evidenced by the fidelity of the critical use cases?
• Are the cost and schedule estimates, priorities, risks, and development processes credible?
• Do the depth and breadth of an architecture prototype demonstrate the preceding criteria?

• Are actual resource expenditures versus planned expenditures acceptable?

ELABORATION PHASE
• At the end of this phase, the “Engineering” is considered complete. The elaboration phase activities must ensure

that the architecture, requirements, and plans are stable enough, and the risks sufficiently mitigated, that the cost

and schedule for the completion of the development call be predicted within an acceptable range. During the
elaboration phase, an executable architecture prototype is built in one or more iterations, depending on the

scope, size and risk.

 Primary Objectives
• Base lining the architecture as rapidly as practical (establishing a configuration-managed snapshot in which all

changes are rationalized, tracked, and maintained)

• Base lining the vision

• Base lining a high-fidelity plan for the construction phase

• Demonstrating that the baseline architecture will support the vision at a reasonable cost in a reasonabletime

 Essential Activities

22

• Elaborating the vision.

• Elaborating the process and infrastructure.
• Elaborating the architecture and selecting components.

 Primary Evaluation Criteria

• Is the vision stable?

• Is the architecture stable?
• Does the executable demonstration show that the major risk elements have been addressed and credibly

resolved?

• Is the construction phase plan of sufficient fidelity, and is it backed up with a credible basis of estimate?
• Do all stakeholders agree that the current vision can be met if the current plan is executed to develop the

complete system in the context of the current architecture?

• Are actual resource expenditures versus planned expenditures acceptable?

CONSTRUCTION PHASE

• During the construction phase, all remaining components and application features are integrated into the
application, and all features are thoroughly tested. Newly developed software is integrated where required. The

construction phase represents a production process, in which emphasis is placed on managing resources and

controlling operations to optimize costs, schedules and quality.

 Primary Objectives

• Minimizing development costs by optimizing resources and avoiding unnecessary scrap and rework
• Achieving adequate quality as rapidly as practical
• Achieving useful versions (alpha, beta and other test releases) as rapidly as practical

 Essential Activities

• Resource management, control and process optimization
• Complete component development and testing against evaluation criteria.
• Assessment of product releases against acceptance criteria of the vision.

 Primary Evaluation Criteria

• Is this product baseline mature enough to be deployed in the user community?

• Is this product baseline stable enough to be deployed in the user community?
• Are the stakeholders ready for transition to the user community?
• Are actual resource expenditures versus planned expenditures acceptable?

TRANSITION PHASE

• The transition phase is entered when a baseline is mature enough to be deployed in the end-user domain. This
typically requires that a usable subset of the system has been achieved with acceptable quality levels and user

documentation so that transition to the user will provide positive results. This phase could include any of the

following activities:

1. Beta testing to validate the new system against user expectations.
2. Beta testing and parallel operation relative to a legacy system it is replacing.

3. Conversion of operational databases.
4. Training of user and maintainers- transition phase concludes when the deployment baseline has achieved the

complete vision.

 Primary Objectives

• Achieving user self-supportability
• Achieving stakeholder concurrence that deployment baselines are complete and consistent with the evaluation

criteria of the vision

• Achieving final produce baselines as rapidly and cost-effectively as practical.

 Essential Activities

• Synchronization and integration of concurrent construction increments into consistent deployment baselines
• Deployment-specific engineering Assessment of deployment baselines against the complete vision and

acceptance criteria in the requirements set.

 Primary Evaluation Criteria

• Is the user satisfied?
• Are actual resource expenditures versus planned expenditures acceptable?

23

THE ARTIFACT SETS

 To make the development of a complete software system manageable, distinct collections of information are

organized into artifact sets. Artifact represents cohesive information that typically is developed and reviewed as a

single entity.

 Life-cycle software artifacts are organized into five distinct sets that are roughly partitioned by the underlying

language of the set:

1. Management (ad hoc textual formats),
2. Requirements (organized text and models of the problem space,
3. Design (models of the solution space),
4. Implementation (human-readable programming, language and associated source files), and
5. Deployment (machine-process able languages and associate files).

The artifact sets are shown in the following figure:

The Engineering sets consist of the requirements set, the design set, the implementation set, and the deployment set.

The Management Set:

 The management set captures the artifacts associated with process planning and execution.
 These artifacts use ad hoc notations, including text, graphics, or whatever representation is required to capture the

“contracts” among project personnel (project management, architects, developers, testers, marketers,

administrators), among stakeholders (funding authority, user, software project manager, organization manager,

regulatory agency), and between project personnel and stakeholders.

 Specific artifacts included in this set are the work breakdown structure (activity breakdown and financial tracking
mechanism), the business case (cost, schedule, profit expectations), the release specifications (scope, plan,

objectives for release baselines), the software development plan (project process instance), the release descriptions

(results of release baselines), the status assessments (periodic snapshots of project progress), the software change
orders (descriptions of discrete baseline changes), the deployment documents (cutover plan, training course, sales

rollout kit), and the environment (hardware and software tools, process automation & documentation).

 Management set artifacts are evaluated, assessed, and measured through a combination of the following:

Relevant stakeholder review.

Analysis of changes between the current version of the artifact and previous versions.

Major milestone demonstrations of the balance among all artifacts and, in particular, the accuracy of the
business case and vision artifacts.

24

Requirements Set:

Requirements artifacts are evaluated, assessed, and measured through a combination of the following:

Analysis of consistency with the release specifications of the management set.

Analysis of consistency between the vision and the requirements models.

Mapping against the design, implementation, and deployment sets to evaluate the consistency and
completeness and the semantic balance between information in the different sets.

Analysis of changes between the current version of requirements artifacts and previous versions (scrap,
rework, and defect elimination trends).

Subjective review of other dimensions of quality.

Design Set

UML notation is used to engineer the design models for the solution. The design set contains varying levels of
abstraction that represent the components of the solution space (their identities, attributes, static relationships, dynamic

interactions). The design set is evaluated, assessed and measured through a combination of the following:

Analysis of the internal consistency and quality of the design model

Analysis of consistency with the requirements models

Translation into implementation and deployment sets and notations (for example, traceability, source code

generation, compilation, linking) to evaluate the consistency and completeness and the semantic balance

between information in the sets.

Analysis of changes between the current version of the design model and previous versions (scrap, rework, and

defect elimination trends).

Subjective review of other dimensions of quality.

Implementation Set

 The implementation set includes source code (programming language notations) that represents the tangible

implementations of components (their form, interface, and dependency relationships).

 Implementation sets are human-readable formats that are evaluated, assessed, and measured through a combination
of the following:

Analysis of consistency with the design models.

Translation into deployment set notations (for example, compilation and linking) to evaluate the consistency
and completeness among artifact sets.

Assessment of component source or executable files against relevant evaluation criteria through inspection,

analysis, demonstration, or testing

Execution of stand-alone component test cases that automatically compare expected results with actual

results.

Analysis of changes between the current version of the implementation set and previous versions (scrap,

rework, and defect elimination trends).

Subjective review of other dimensions of quality.

Deployment Set

 The deployment set includes user deliverables and machine language notations, executable software, and the build

scripts, installation scripts, and executable target specific data necessary to use the product in its target environment.

 Deployment sets are evaluated, assessed, and measured through a combination of the following:

Testing against the usage scenarios and quality attributes defined in the requirements set to evaluate the

consistency and completeness and the semantic balance between information in the two sets.

Testing the partitioning, replication, and allocation strategies in mapping components of the implementation

set to physical resources of the deployment system (platform type, number, network topology).

Testing against the defined usage scenarios in the user manual such as installation, user oriented dynamic

reconfiguration, mainstream usage, and anomaly management

Analysis of changes between the current version of the deployment set and previous versions (defect

elimination trends, performance changes).

Subjective review of other dimensions of quality.

25

Most of today‟s software development tools map closely to one of the five artifact sets.

1. Management: scheduling, workflow, defect tracking, change management, documentation, spreadsheet resource
management, and presentation tools.

2. Requirements: requirements management tools.
3. Design: visual modeling tools.

4. Implementation: compiler/debugger tools, code analysis tools, test coverage analysis tools, and test management
tools.

5. Deployment: test coverage and test automation tools, network management tools, commercial components (OS,

GUIs, RDBMS, networks, middleware), and installation tools.

Artifact Evolution over the Life Cycle

Each state of development represents a certain amount of precision in the final system description. Early in the lif e

cycle, precision is low and the representation is generally high. Eventually, the precision of representation is high and
everything is specified in full detail. Each phase of development focuses on a particular artifact set. At the end of each

phase, the overall system state will have progressed on all sets, as illustrated in following figure:

The inception phase focuses mainly on critical requirements usually with a secondary focus on an initial deployment
view. During the elaboration phase, there is much greater depth in requirements, much more breadth in the design set,

and further work on implementation and deployment issues. The main focus of the construction phase is design and

implementation. The main focus of the transition phase is on achieving consistency and completeness of the

deployment set in the context of the other sets.

Test Artifacts

 The test artifacts must be developed concurrently with the product from inception through deployment. Thus, testing
is a full-life-cycle activity, not a late life-cycle activity.

 The test artifacts are communicated, engineered, and developed within the same artifact sets as the developed
product.

 The test artifacts are implemented in programmable and repeatable formats (as software programs).

26

 The test artifacts are documented in the same way that the product is documented.
 Developers of the test artifacts use the same tools, techniques, and training as the software engineers developing the

product.

Management Set: The release specifications and release descriptions capture the objectives, evaluation

criteria, and results of an intermediate milestone.

Requirements Set: The system-level use cases capture the operational concept for the system and the

acceptance test case descriptions, including the expected behavior of the system and its quality attributes.

Design Set: A test model for non deliverable components needed to test the product baselines is captured in

the design set.

Implementation Set: Self-documenting source code representations for test components and test drivers

provide the equivalent of test procedures and test scripts.

Deployment Set: Executable versions of test components, test drivers, and data files are provided.

MANAGEMENT ARTIFACTS

The management set includes several artifacts that capture intermediate results and ancillary information necessary to
document the product/process legacy, maintain the product, improve the product and improve the process.

Business Case:

 The business case artifact provides all the information necessary to determine whether the project is worth investing

in. It details the expected revenue, expected cost, technical and management plans, and backup data necessary to
demonstrate the risks and realism of the plans.

 The main purpose is to transform the vision into economic terms so that an organization can make an accurate ROI

assessment.

Work Breakdown Structure:

 Work breakdown structure (WBS) is the vehicle for budgeting and collecting costs.

 To monitor and control a project‟s financial performance, the software project manager must have insight into

project costs and how they are expended. The structure of cost accountability is a serious project planning

constraint.

Software Change Order Database:

Managing change is one of the fundamental primitives of an iterative development process. With greater change

freedom, a project can iterate more productively. This flexibility increases the content, quality and number of iterations

that a project can achieve within a given schedule. Change freedom has been achieved in practice through automation,

27

and today‟s iterative development environments carry the burden of change management. Organizational processes that

depend on manual change management techniques have encountered major inefficiencies.

Release Specifications:

 The scope, plan, and objective evaluation criteria for each baseline release are derived from the vision statement as

well as many other sources (make/buy analyses, risk management concerns, architectural considerations, shots in

the dark, implementation constraints, quality thresholds).

 These artifacts are intended to evolve along with the process, achieving greater fidelity as the life cycle progresses

and requirements understanding matures.

Software Development Plan:

The software development plan (SDP) elaborates the process framework into a fully detailed plan.
Two indications of a useful SDP are periodic updating (it is not stagnant shelf ware) and understanding and acceptance

by managers and practitioners alike.

Release descriptions:

 Release description documents describe the results of each release, including performance against each of the

evaluation criteria in the corresponding release specification.

 Release baselines should be accompanied by a release description document that describes the evaluation criteria for

that configuration baseline and provides substantiation (through demonstration, testing, inspection, or analysis) that
each criterion has been addressed in an acceptable manner.

28

Status Assessments:

Status assessments provide periodic snapshots of project health and status, including the software project manager‟s risk

assessment, quality indicators, and management indicators. Typical status assessments should include a review of

resources, personnel staffing, financial data (cost and revenue), top 10 risks, technical progress (metrics snapshots),

major milestone plans and results, total project or product scope & action items.

Environment:
An important emphasis of a modern approach is to define the development and maintenance environment as a first-class

artifact of the process. A robust, integrated development environment must support automation of the development

process. This environment should include requirements management, visual modeling, document automation, host and

target programming tools, automated regression testing, and continuous and integrated change management, and feature
and defect tracking.

Deployment:

A deployment document can take many forms. Depending on the project, it could include several document subsets for

transitioning the product into operational status. In big contractual efforts in which the system operations manuals,
software installation manuals, plans and procedures for cutover (from a legacy system), site surveys, and so forth. For

commercial software products, deployment artifacts may include marketing plans, sales rollout kits, and training

courses.

Management Artifact Sequences

In each phase of the life cycle, new artifacts are produced and previously developed m1ifacts are updated to incorporate

lessons learned and to capture further depth and breadth of the solution. The following figure identifies a typical

sequence of artifacts across the life-cycle phases.

4.3. ENGINEERING ARTIFACTS

Most of the engineering artifacts are captured in rigorous engineering notations such as UML, programming languages,

or executable machine codes. Three engineering artifacts are explicitly intended for more general review, and they
deserve further elaboration.

Vision document

 The vision document provides a complete vision for the software system under development and supports the

contract between the funding authority and eth development organization.

 A project vision is meant to be changeable as understanding evolves of the requirements, architecture, plans and
technology.

 A good visions document should change slowly.
The following figure provides a default outline for a visions document:

Architecture Description:

The Architecture description provides an organized view of the software architecture under development. It is extracted

largely from the design model and includes views of the design, implementation and deployment sets sufficient to
understand how the operational concept of the requirements et will be achieved. The breadth of the architecture

description will vary from project to project depending on many factors. The following figure provides a default outline

form an architecture description.

Software Use Manual

 The software user manual provides the user with the reference documentation necessary to support delivered

software. Although content is highly variable across application domains, the user manual should include
installation procedures, usage procedures and guidance, operational constraints, and a user interface description at a

minimum.

 For software products with a user interfaced, this manual should be developed early in the life cycle because it is a
necessary mechanism for communication and stabilizing an important subset of requirements.

 The user manual should be written by members of the test team, who are more likely to understand the user‟s
perspective than the development team.

29

30

PRAGMATIC ARTIFACTS

a) People want to review information but don’t understand the language of the artifact: Many interested

reviewers of a particular artifact will resist having to learn the engineering language in which the artifact is written.

It is not uncommon to find people (such as veteran software managers, veteran quality assurance specialists, or an
auditing authority from a regulatory agency) who react as follows: “I‟m not going to learn UML, but I want to

review the design of this software, so give me a separate description such as some flowcharts and text that I can

understand.”

b) People want to review the information but don’t have access to the tools:It is not very common for the
development organization to be fully tooled; it is extremely rare that the/other stakeholders have any capability to

review the engineering artifacts on-line. Consequently, organization is forced to exchange paper documents.

Standardized formats (such as UML, spreadsheets, Visual Basic, C++ and Ada 95), visualization tools, and the web
are rapidly making it economically feasible for all stakeholders to exchange information electronically.

c) Human-readable engineering artifacts should use rigorous notations that are complete, consistent, and used

in a self-documenting manner: Properly spelled English words should be used for all identifiers and descriptions.
Acronyms and abbreviations should be used only where they are well accepted jargon in the context of the
component‟s usage. Readability should be emphasized and the use of proper English words should be required in all
engineering artifacts. This practice enables understandable representations, browse able formats (paperless review),
more-rigorous notations, and reduced error rates.

d) Useful documentation is self-defining: It is documentation that gets used.
e) Paper is tangible; electronic artifacts are too easy to change. On-line and Web-based artifacts can be changed

easily and are viewed with more skepticism because of their inherent volatility.

	PEER INSPECTIONS: A PRAGMATIC VIEW
	ESPM UNIT II
	PRINCIPLES OF CONVENTIONAL SOFTWARE ENGINEERING
	PRINCIPLES OF MODERN' SOFTWARE MANAGEMENT

	TRANSITIONING TO AN ITERATIVE PROCESS
	LIFE CYCLE PHASES
	Engineering and Production Stages
	INCEPTION PHASE
	 Primary Objectives
	 Essential Activities
	 Primary Evaluation Criteria
	ELABORATION PHASE
	 Primary Objectives (1)
	 Essential Activities (1)
	 Primary Evaluation Criteria (1)
	CONSTRUCTION PHASE
	 Primary Objectives (2)
	 Essential Activities (2)
	 Primary Evaluation Criteria (2)
	TRANSITION PHASE
	 Primary Objectives (3)
	 Essential Activities (3)
	 Primary Evaluation Criteria (3)
	THE ARTIFACT SETS
	The Management Set:
	Requirements Set:
	Design Set
	Implementation Set
	Deployment Set
	Artifact Evolution over the Life Cycle
	Test Artifacts
	MANAGEMENT ARTIFACTS
	Business Case:
	Work Breakdown Structure:
	Software Change Order Database:
	Release Specifications:
	Software Development Plan:
	Release descriptions:
	Status Assessments:
	Environment:
	Deployment:
	Management Artifact Sequences
	4.3. ENGINEERING ARTIFACTS
	Vision document
	Architecture Description:
	Software Use Manual
	PRAGMATIC ARTIFACTS

